國立成功大學行學年度冷裝所考試(茶科數學試題)等 頁

Part I

- 1. Let A be a 2×3 matrix. Show that there exist an invertible 2×2 matrix P and an invertible 3×3 matrix Q such that PAQ is of the form $\begin{bmatrix} a & b & 0 \\ c & d & 0 \end{bmatrix}$. (10%)
- 2. Assume that T is a linear operator on a complex inner product space V. Show that (10%)
 - (i) If $\langle Tx, x \rangle = 0$, for all $x \in X$, then T = 0.
 - (ii) If $\langle Tx, x \rangle \in \mathbb{R}$, for all $x \in X$, then $T = T^*$.
- Let V be a finite dimensional vector space and V* the dual space of V.
 Prove that if W is a subspace of V, then dim (W)+ dim (W°) = dim (V), where W° = {f ∈ V* : f(x) = 0 for all x ∈ W}.
- 4. Let $T: \mathbb{R}^n \to \mathbb{R}^n$ be a linear transformation with the characteristic polynomial f(t) = p(t)q(t). Suppose p(t) and q(t) are relative prime. (10%)
 - (i) Prove that $N(p(T)) \subseteq R(q(T))$ where N(p(T)) and R(q(T)) denote the null space of p(T) and the range of q(T), respectively.
 - (ii) Does N(p(T)) = R(q(T))? Justify your answer!
- 5. Suppose A, B and D are square matrices such that $A = \begin{pmatrix} B & C \\ 0 & D \end{pmatrix}$. Show that $\det A = (\det B)(\det D)$. (10%)

Part II

- 1. (i) Suppose f and g are (Riemann) integrable on [a,b] with $g(x) \ge 0$ for all $x \in [a,b]$.

 Please write down the mean value theorem for integrals. (10%)
 - (ii) Suppose $f:[0,1] \to \mathbb{R}$ is continuous and satisfies $\int_0^1 f(x)dx = \frac{1}{2}$. Does f have a fixed point ξ in [0,1]? (10%)
- Let (X, d) be a metric space. If T maps X into X and if there is c∈ (0,1) such that d(Tx, Ty) ≤ cd(x, y) for all x, y ∈ X, then T is said to be a contraction of X into X. The Banach contraction principle says that if T is a contraction of a complete metric space X into itself, then T has a unique fixed point ξ in X. Please use this principle to answer the following problem: Show that there is a unique continuous function f: [-1,1] → ℝ such that f(x) = x + ½ sin f(x).
- 3. Suppose $\alpha > 1$. Evaluate the limit $\lim_{n \to \infty} \int_0^1 \frac{x \sin x}{1 + (nx)^{\alpha}} dx$. (10%)
- 4. Prove that there exist functions u(x,y), v(x,y) and w(x,y) and an r > 0 such that u, v, w are C^1 and satisfy the equations

$$u^5 + xv^2 - y + w = 0$$

$$v^5 + yu^2 - x + w = 0$$

$$w^4 + y^5 - x^4 = 1$$

on the ball B((1,1);r) of \mathbb{R}^2 , and u(1,1)=1, v(1,1)=1, w(1,1)=-1. (10%)