國立成功大學 103 學年度「博士班」研究生招生入學考試 【高等微積分】

Advanced Calculus

- 1. (25) State and prove the Heine-Borel theorem.
- 2. (25) State and prove the inverse function theorem for \mathbb{R}^n .
- 3. (25) State and prove the closed graph theorem for a real-valued function.
- 4. (25) Evaluate the line integral

$$\int_{\gamma} F$$
,

where

$$\gamma: [0, \pi] \to \mathbb{R}^2, \quad \gamma(t) = (\sin(\pi e^{\sin t}), \cos^5 t)$$

and

$$F(x,y) = (e^x(\sin(x+y) + \cos(x+y)) + 1, e^x\cos(x+y)).$$

國立成功大學 103 學年度「博士班」研究生招生入學考試

【線性代數】

Linear Algebra

Notice: Justify your answers to get the full credit.

1. (10 points) Let

$$A = \begin{pmatrix} 1 & 0 & -1 & 2 & 1 \\ -1 & 1 & 3 & -1 & 0 \\ -2 & 1 & 4 & -1 & 3 \\ 3 & -1 & -5 & 1 & -6 \end{pmatrix}.$$

Consider the set $\Gamma = \{B \in M_{5\times 5}(\mathbb{R}) \mid AB = 0\}$. Find the number

$$\min_{B \in \Gamma} \left\{ \dim_{\mathbb{R}} \langle v \in M_{5 \times 1}(\mathbb{R}) \mid Bv = 0 \rangle \right\}.$$

2. (10 points) Let y_1, y_2, \ldots, y_n be linear independent functions in C^{∞} , the vector space of all C^{∞} -functions. Consider the linear transformation $T: C^{\infty} \to C^{\infty}$ defined by

$$[T(y)](t) = \det \begin{pmatrix} y(t) & y_1(t) & y_2(t) & \cdots & y_n(t) \\ y'(t) & y'_1(t) & y'_2(t) & \cdots & y'_n(t) \\ \vdots & \vdots & \vdots & & \vdots \\ y^{(n)}(t) & y_1^{(n)}(t) & y_2^{(n)}(t) & \cdots & y_n^{(n)}(t) \end{pmatrix}.$$

Find the null space of T.

3. Let

$$A = \begin{pmatrix} -3 & 3 & -2 \\ -7 & 6 & -3 \\ 1 & -1 & 2 \end{pmatrix}.$$

- (a) (10 points) Find an invertible matrix Q such that $Q^{-1}AQ$ is the Jordan canonical form of A.
- (b) (10 points) Does the limit $\lim_{m\to\infty} A^m$ exists?
- (c) (10 points) Find a diagonalizable matrix B in $M_{3\times3}(\mathbb{R})$ such that N=A-B is nilpotent (i.e. $N^m=0$ for some non-negative integer m) and NB=BN.
- 4. Let

$$A = \begin{pmatrix} 0 & 2 & 0 & -6 & 2 \\ 1 & -2 & 0 & 0 & 2 \\ 1 & 0 & 1 & -3 & 2 \\ 1 & -2 & 1 & -1 & 2 \\ 1 & -4 & 3 & -3 & 4 \end{pmatrix}.$$

- (a) (10 points) Find the minimal polynomial of A
- (b) (10 points) Find the rational canonical form of A.
- 5. (a) (15 points) Let T be a diagonalizable linear operator on a finite-dimensional vector space. Show that the restriction of T to any nontrivial T-invariant subspace is also diagonalizable.
 - (b) (15 points) Show that two commuting real symmetric matrices are simultaneously diagonalizable. (i.e. If A and B are two real symmetric matrices satisfying AB = BA, then there exists an invertible matrix Q such that $Q^{-1}AQ$ and $Q^{-1}BQ$ are both diagonal matrices.)

國立成功大學 103 學年度「博士班」研究生招生入學考試

【實變數函數論】

Real Analysis

- 1. (a) State the Fatou's lemma. (20 points)
- (b) Given an example to show that the inequality in Fatou's lemma may be strict. (20 points)
- 2. Give an example of a sequence of Lebesgue integrable functions f_n converging everywhere to a Lebesgue integrable function f, such that

$$\lim_{n \to \infty} \int_{-\infty}^{\infty} f_n(x) dx < \int_{-\infty}^{\infty} f(x) dx. \quad (20 \text{ points})$$

- 3. Give an example of a sequence of functions f_n on [a, b] such that each f_n is Riemann integrable, $|f_n| \leq 1$ for all $n, f_n \to f$ everywhere, but f is not Riemann integrable. (20 points)
- 4. Show that $\int_1^\infty e^{-t} \ln t \, dt = \lim_{n \to \infty} \int_1^n [1 (t/n)]^n \ln t \, dt$. (20 points)

國立成功大學 103 學年度「博士班」研究生招生入學考試

【代數】

Algebra Exam Date: Thursday 01/05/2014 Do all the following problems. Be sure to show all work and explain your reasoning as clearly as possible.

- 1. (a) (10%) Prove that for $n \geq 5$, the only normal subgroups of S_n are 1, A_n and S_n .
 - (b) (10%) Prove that if p is a prime and P is a non-abelian group of order p^3 then |Z(P)| = p and $P/Z(P) \simeq \mathbb{Z}_p \times \mathbb{Z}_p$.
 - (c) (10%) Prove that if |G| = 1365 then G is not simple.
- 2. (a) (10%) Let p and q are primes with p < q. Show that every group of order p^2q is solvable.
 - (b) (10%) Show that a finite group is nilpotent if and only if every maximal subgroup is normal.
- 3. Let ζ_n be a primitive *n*th root of unity. Define the *n*th cyclotomic polynomial $\Phi_n(x)$ as follows:

$$\Phi_n(x) = \prod_{\substack{1 \le a < n \\ \gcd(a,n) = 1}} (x - \zeta_n^a)$$

- (a) (20%) Show that $\Phi_n(x)$ is an irreducible monic polynomial in $\mathbb{Z}[x]$ of degree $\varphi(n)$, where φ denotes Euler's phi-function.
- (b) (5%) Conclude using (a) that

$$[\mathbb{Q}(\zeta_n):\mathbb{Q}]=\varphi(n).$$

4. (25%) Determine the Galois group of $(x^2 - 2)(x^2 - 3)(x^2 - 5)$. Determine all the subfields of the splitting field of this polynomial.