國立成功大學一〇〇學年度 博士班 高等微積分 試題 共1頁

注意事項:作答時請務必在所屬答案卷上作答並標明題號。

100.05.03

1. Let the sequence $\{a_n\}$ be given recursively by the formula

$$\begin{cases} a_1 = 2, \\ a_{n+1} = (2a_n + 4)/3. \end{cases}$$

Show that $\{a_n\}$ is monotone increase and bounded above. (15 points)

2. Show that the function

$$f(x) = \int_0^{1/x} \frac{1}{1+t^2} dt - \int_x^0 \frac{1}{1+t^2} dt$$

is constant for x > 0. (15 points)

3. Prove that

$$\left| \int_0^1 x \cdot \sin(1/x) \, dx \right| \le \left(\int_0^1 x^2 \cdot \sin^2(1/x) \, dx \right)^{1/2}.$$

 $(\text{Hint:}(\sum a_k b_k)^2 \le \sum a_k^2 \sum b_k^2.)$ (15 points)

4. Let f be continuous on the interval [0,b] where $f(x)+f(b-x)\neq 0$ on [0,b]. Show that

$$\int_0^b \frac{f(x)}{f(x) + f(b - x)} dx = \frac{b}{2}.$$

(15 points)

5. Suppose that $f: \mathbf{R} \to \mathbf{R}$ is continuous and satisfies

$$f^2(t) = 2\int_0^t f(s)ds$$

for t > 0. Show that either $f \equiv 0$ or there is a $t_0 \ge 0$ such that

$$f(t) = \begin{cases} t - t_0, & t \ge t_0, \\ 0, & 0 \le t \le t_0. \end{cases}$$

(20 points)

6. Let f(x) be bounded and continuous on $[0, \infty)$. Let

$$F(t) = \int_0^\infty \frac{t f(x)}{t^2 + x^2} dx.$$

Find $\lim_{t\to 0^+} F(t)$. (20 points)

注意事項:作答時請務必在所屬答案卷上作答並標明題號。

100.05.03

Time 9:50-11:00

Let \mathbb{N} , \mathbb{R} and \mathbb{C} denote the set of positive integers, real numbers and complex numbers, repectively.

- 1. (10%) Let A be an $n \times m$ matrix with entries in \mathbb{R} and let I_m denote the $m \times m$ identity matrix. Prove that there is an $m \times n$ matrix B such that $BA = I_m$ if and only if the rank of the matrix A is m.
- 2. (15%) Let V and W be finite-dimensional vector spaces over \mathbb{R} and $T:V\to W$ be a linear transformation. Let V^* and W^* denote the dual spaces of the vector spaces V and W, and let $T^*:W^*\longrightarrow V^*$ be a linear transformation defined by $T^*(f)=f\circ T$. Prove that $T:V\to W$ is onto if and only if $T^*:W^*\to V^*$ is one-to-one.
- 3. (30%) Let W be a subspace of the set of functions from \mathbb{R} to \mathbb{R} spanned by the set $\mathscr{B} = \{1, e^x, xe^x, x^2e^x\}$. Let $T: W \longrightarrow W$ be a linear transformation defined by

$$T(f)(x) = \frac{d}{dx}f(x) - f(x).$$

- (a) (10%) Show that $\mathcal{B} = \{1, e^x, xe^x, x^2e^x\}$ is a linear independent set.
- (b) (5%) Find the matrix representation of T with respect to the basis \mathcal{B} .
- (c) (5%) Find the matrix representation of T^2 with respect to the basis \mathcal{B} .
- (d) (5%) Find a basis for the kernel of T^2 .
- (e) (5%) Find a basis for the image of T^2 .

4. (25%)

- (a) (15%) Let V be a finite dimensional vector space over \mathbb{R} with an inner product \langle , \rangle . Let $\{w_1, w_2, \cdots, w_k\}$ be an orthonormal basis for a subspace W of V with $k \in \mathbb{N}$. For $v \in V$, we let $||v|| = \sqrt{\langle v, v \rangle}$. Fix a vector $u \in V$ and define $d = \inf\{||u w|| \in \mathbb{R} \mid w \in W\}$. Prove that $d = ||u \langle u, w_1 \rangle w_1 \langle u, w_2 \rangle w_2 \cdots \langle u, w_k \rangle w_k||$.
- (b) (10%) Find $\alpha, \beta \in \mathbb{R}$ so that

$$\int_0^{\pi} (\cos x - \alpha x - \beta)^2 dx \le \int_0^{\pi} (\cos x - ax - b)^2 dx, \quad \text{for all } a, b \in \mathbb{R}.$$

- 5. (20%) Let V be a finite dimensional vector space over $\mathbb C$ with the hermitian inner product \langle , \rangle . Let $\mathcal B = \{v_1, v_2, \cdots, v_n\}$ be an orthonormal basis for V. Let $T: V \longrightarrow V$ be a linear transformation such that $\{T(v_1), T(v_2), \cdots, T(v_n)\}$ is also an orthonormal basis for V.
 - (a) (5%) Show that $\langle T(v), T(w) \rangle = \langle v, w \rangle$ for all $v, w \in V$.
 - (b) (5%) Show that if $\{w_1, w_2, \dots, w_n\}$ is any orthonormal basis for the vector space V, then $\{T(w_1), T(w_2), \dots, T(w_n)\}$ is also an orthonormal basis for V.
 - (c) (10%) Show that $TT^* = T^*T = id_V$, where id_V is the identity map of V and T^* is the adjoint operator with respect to the hermitian inner product.

國立成功大學一〇〇學年度 博士班 實變數函數論 試題 共1頁

注意事項:作答時請務必在所屬答案卷上作答並標明題號。

100.05.03

- 1. (10 points) Let f be a simple function, taking its distinct values a_1, \ldots, a_N on disjoint sets E_1, \ldots, E_N respectively. Show that $f(x) = \sum_{i=1}^N a_i \varkappa_{E_i}(x)$ is measurable on $E = \bigcup_{i=1}^N E_i$ if and only if E_1, \ldots, E_N are measurable.
- 2. (10 points) Let $f: E \to \mathbb{R} \cup \{\pm \infty\}$ be a nonnegative measurable function such that $\int_E f < \infty$. Show that for any $\varepsilon > 0$ there exists $\delta > 0$ such that for any measurable subset $E_1 \subset E$ with $|E_1| < \delta$ we have $\int_{E_1} f < \varepsilon$.

Hint: For each k = 1, 2, ..., and $x \in E$, define the function $f_k(x) = \begin{cases} f(x) & \text{if } f(x) < k, \\ k & \text{if } f(x) \ge k. \end{cases}$ Note that the sequence $0 \le f_k(x) \nearrow f(x)$ on E.

3. (10 points) Let f(x,y), $0 \le x, y \le 1$, satisfy the following conditions: for each x, f(x,y) is an integrable function of y, and $(\partial f(x,y)/\partial x)$ is a bounded function of (x,y). Show that $(\partial f(x,y)/\partial x)$ is a measurable function of y for each x and

$$\frac{d}{dx} \int_0^1 f(x, y) dy = \int_0^1 \frac{\partial}{\partial x} f(x, y) dy.$$

Hint: For each $n = 1, 2, \ldots$, define $F_n(x, y) = \frac{f(x + \frac{1}{n}, y) - f(x, y)}{\frac{1}{n}}$, and determine $\lim_{n \to \infty} F_n(x, y)$.

4. (10 points) Let $\phi(x)$, $x \in \mathbb{R}^n$ be a bounded measurable function such that $\phi(x) = 0$ for $|x| \ge 1$ and $\int \phi = 1$. For $\epsilon > 0$, let $\phi_{\epsilon}(x) = \epsilon^{-n}\phi(x/\epsilon)$. If $f \in L(\mathbb{R}^n)$, show that

$$\lim_{\epsilon \to 0} (f * \phi_{\epsilon})(x) = f(x)$$

at each Lebesgue point x of f, i.e. x is a point at which

$$\lim_{Q \searrow x} \frac{1}{|Q|} \int_{Q} |f(y) - f(x)| dy = 0 \text{ is valid.}$$

Hint: Note that $\lim_{\epsilon \to 0} (f * \phi_{\epsilon})(x) = \lim_{\epsilon \to 0} \int_{\mathbb{R}^n} f(x-y)\phi_{\epsilon}(y) dy$ and $f(x) = \lim_{\epsilon \to 0} \int_{\mathbb{R}^n} f(x)\phi_{\epsilon}(y) dy$

5. (10 points) Let f, $\{f_k\} \in L^p$. Show that if $||f - f_k||_p \to 0$, then $||f_k||_p \to ||f||_p$. Conversely, if $f_k \to f$ a.e. and $||f_k||_p \to ||f||_p$, $1 \le p < \infty$, show that $||f - f_k||_p \to 0$. Hint: For the converse, you may use the following inequality and apply Fatou's lemma.

$$2^{p} |f|^{p} + 2^{p} |f_{k}|^{p} - |f - f_{k}|^{p} \ge 0$$

注意事項:作答時請務必在所屬答案卷上作答並標明題號。

100.05.03

Work out all of the problems and show details of your works.

- 1. Let p be a prime number and n a positive integer.
- [6%] (a) Prove that any two groups of order p are isomorphic.
- [5%] (b) Show that if G is a group of order p^n , then G has an element of order p.
- [5%] (c) Show that if G is a group of order p^2 , then G is abelian.
- [5%] 2. (a) Find the centralizers in S_7 of the permutation $\sigma = (123)(4567)$.
- [5%] (b) Give a list of representatives for the conjugacy classes of elements of order 6 in S_7 .
 - 3. Let $f: R \to S$ be a homomorphism of rights with kernel K and image I.
- [6%] (a) Show that if N is a subring of R, then $f^{-1}(f(N)) = K + N$.
- [6%] (b) Show that if L is a subring of S, then $f(f^{-1}(L)) = I \cap L$.
 - 4. Let F be a field extension of the rational numbers.
- [6%] (a) Show that the set $\{a + b\sqrt{2} \mid a, b \in F\}$ is a field.
- [6%] (b) Give necessary and sufficient conditions for the set $L = \{a + b\sqrt[3]{2} \mid a, b \in F\}$ to be a field.