CALCULUS Final SOLUTION

Exam Set:A

1. (i) To find the first partial derivative with respect to y,hold x constant
to obtain
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The value of f,(z,y) at the point (8, —6) is
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(ii) Since lim, o i = 22, you can apply L'Hopital’s Rule,as follows
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2. (i) Since f(z) = ax?(1 — z) is a probability density function on the
interval [0,1]. So, evaluate the following integral
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Thus, a = 12.
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3. (i) First you interchange the order of integration so that y is the outer
variable ,then y will have constant bounds of integration given by
0 < y < 1.Solving for z in the equation y = /z implies that the
bounds for x are 0 < x < y2.Thus
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(ii) By integration by parts, we can written the integral as follows
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By assumption f(0) =4, f(3) =5, and f/(3) = 5.Thus
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4. (i) Let u =1+ cos®*t, du = —2sintcostdt,Then the integral
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Integrate both sides [dt = [ mdy.Then
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equation with initial condition is y(t) = . _T_ 7

When the ball hits the ground the first time, it has traveled a distance
of

D, =16

.Between the first and second times it hits the ground, it has traveled
an additional distance of

() () =2 (3)

Between the second and third times the ball hits the ground, it has
traveled an additional distance of
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Continuing this process,you obtain a total vertical distance traveled
of
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The infinite series
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is a p-series with p = %.Because p > 1l,you can conclude that the
series converges.

The first derivative of f is f/(z) = 3z%. Thus ,the iterative formula
for Newton’s Method is
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The calculations for two iterations are shown in the table.

n Tn f(zn) f/(l'n) f/((?;)) Ty — f/((a;:))
1 4 -3 48 —0.0625 4.0625

2 | 4.0625 | 0.04712 | 49.51172 | 0.00095 4.06155
3 | 4.06115

Thus,the approximation is v/67 = 4.06115

Begin by finding several derivatives of f and evaluation each at ¢ = 64
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Thus, the two-degree Taylor polynomial is
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To evaluate the series when x = 67.
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9. Finding several derivatives of f and evaluation each at ¢ =0

fz) =In (}jﬁ) = In(1+ ) — In(l — z) £(0) =0
f(x) = 1Jlrx* 1:1x: lfajz f(0)=2
F(a) = (; - <;§)“;> - 2y 71(0) =0
2)2 2 9
) (2) = 2 (1—2%) _(fi(ig;“_ a?)(=22)) _ 5 t ig)?’ F®(0) =2

Continuing this process,we can see that f(*»=2)(0) = 0, f2»=1(0) = 2,
Thus the Taylor series
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So,by the Ration Test, this series converges for all  and the radius of
convergence is 0o



10. Let T(z,y,2) = 10zy%z and g(z,y, z) = 22 + y? + 22 — 1.Then, define a
new function F(z,y,z,\) by

F(z,y,z,\) = T(z,y,2) — Mz,y, 2) = 10zy*z — A (x2 +y? 4+ 2% - 1)

To find the critical numbers of F', set the partial derivatives of F' with
respect to x,y,z,and A equal to zero and obtain

Fy(z,y,z,\) = 10y%2 — 2\z = 0, Fy(z,y,xz,\) = 20zyz — 2Ay =0,
F.(z,y,2,\) = 10zy®> — 2Xz =0 (g, N) = -2t =y =224 1=0

Then

Substitute this into the equation Fy(x,y,z,\) = —22 — 3% —224+1 =0
and solve x
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Using this z-value,you can conclude that the critical values are
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which implies that the temperature value is
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Thus,the point(s) on the sphere at which the temperature is greatest is
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the point(s) on the sphere at which the temperature is least is
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