JANUARY 8, 2004

CALCULUS FINAL EXAM— PAPER A

請在答案卷上清楚標明題目卷之種類 (A) 並寫下姓名 No credit will be given for an answer without reasoning.

1. Evaluate

(a)
$$[8\%] \int_{0}^{4} |2x-1| dx$$

(b) $[8\%] \int_{0}^{1} x (x+1)^{10} dx$
(c) $[8\%] \int_{0}^{1} (x+3) \sqrt{2-x} dx$
(d) $[8\%] \int_{0}^{1} \frac{e^{2x}}{e^{2x}+1} dx$

2. [8%] Find the derivative of $y = (x^2 + 1)^{5x+2}$.

3. [8%] A company <u>purchases a new machine</u> (購買了一台新機器) for which the <u>rate of depreciation</u> (折舊速率) can be modelled by

$$\frac{dV}{dt} = 10,000 \, (t-6), \ 0 \le t \le 5$$

where *V* is the value of the machine after *t* years. Set up and evaluate the definite integral that <u>yields the total loss</u> of value of the machine over the first 3 years (給出前三年機器價值的總損失).

4. The marginal revenue (邊際營業額) for the sale of a product can be modelled by $\frac{dR}{dx} = 50 - 0.02x + \frac{100}{x+1}$, where x is the quantity demanded.

- (1) [6%] Find the revenue function R.
- (2) [4%] Find the revenue when 1500 units are sold.

5. Find the volume of the solid obtained by revolving the curve $y = \frac{x^2}{3}$ from (0,0) to $(1,\frac{1}{3})$

- (a) [6%] about x-axis.
- (b) [6%] about the line y = -3.

6. [10%] Use the Midpoint Rule with n = 4 to approximate (逼近) $\int_0^2 \frac{5}{x^3 + 1} dx$.

7. [10%] Find the area of the region bounded by the graphs of $f(x) = (x-1)^3$, and g(x) = x-1 from x = 0 to x = 2.

8. [10%] The demand (需求) and supply (供應) functions for a product are

Demand: p = -0.2x + 12 and Supply: p = 0.3x + 2

where *x* is the number of units (in millions). Find the <u>consumer</u> (消費者) and <u>producer</u> (製造者) <u>surpluses</u> (盈餘) for this product.

Hint: Let (x_0, p_0) be the point at which a demand function and a supply function intersect. <u>Economists</u> (經濟學 者) call the area of the region bounded by the graph of the demand function, the <u>horizontal line</u> (水平線) $p = p_0$, and the <u>vertical line</u> (垂直線) x = 0 the **consumer surplus**. Similarly, the area of the region bounded by the graph of the supply function, the horizontal line $p = p_0$, and the vertical line x = 0 is called the **producer surplus**.