Calculus Midterm #1 (Form D)
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Therefore, if 0 < p < %, the solid has a finite volume 1%217. "
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(i) Begin by factoring the denominator x(x + 1)2. Then, write the partial
fraction decomposition as
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To solve this equation for A, B, and C', multiply each side of the equation
by the least common denominator z(x + 1)2.
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A=1, B= -1, and C = 2. Therefore,
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(ii) Consider the substitution u = 1, which produces du = —x—Ide.
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(iii) Use integration by parts and let dv = xd.
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This implies that
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To evaluate the integral on the right, apply integration by parts once again.
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which gives

(Inz)* — /xlnx dx

72 x
(Inz)? — {E Inx —/5 dx}

(Inx)? B ?Inx 2

x
—+C.
2 2 +4jL

(iv) Consider the substitution v = 3z + 1, which produces du = 3dz and
xr = “T’l The lower and upper limits are changed to v = 4 and u = 10,

respectively.
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(3) When n = 6, the width of each subinterval is (1—(—1))/6 = % and the endpoints
of the subintervals are
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So, by the Simpson Rule
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Begin by finding the first partial derivatives. Holding as a y constant, we obtain
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Holding as a x constant, we obtain
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Then, differentiating f, and f, with respect to x and y to obtain the second
partials as follows.
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(iii) Using (i), the height gap is 1 in z-axis, it means the gap is equal. But the
contour map presents more and more tight squeeze in z-axis, 1 > v/2—1 >
V3—v2>2-— \/g, so the surface becomes steeper in the direction of the
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z-axis. Using (ii), the slope is more and more bigger, it means that the
surface becomes steeper in the direction of the z-axis. "

According to the supply and demand principle, when the unit price for p;
is increased, the numbers of units sold for z; is decreased. But, % > 0,
implies that the unit price for p; increases, the numbers of units sold for
x2 also increases. Therefore, they are substitute.
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Then, they are complementary. "



