Calculus Midterm #1 (Form B)
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Therefore, if 0 < p < %, the solid has a finite volume 1%217. "
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(i) Begin by factoring the denominator x(x + 1)2. Then, write the partial
fraction decomposition as
r—1 A N B N C
p2(x+1) x 22 x+1
To solve this equation for A, B, and C', multiply each side of the equation
by the least common denominator z2(x + 1).
t—1=Ax(zx+1)+ Bz +1) + Ca?
= (Az® + Az) + (Bz + B) + Ca?
= (A+C)2? + (A+ B)z + B.
Hence, A+ C =0, A+ B =1, and B = —1, which has the solution A = 2,
B = —1, and C = —2. Therefore,
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(ii) Consider the substitution u = 1, which produces du = —x—Ide.
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(iii) Use integration by parts and let dv = xd.

dv = xdx = v=—
u = (Inx)? = du = 2(Inz)(

This implies that
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To evaluate the integral on the right, apply integration by parts once again.
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u=Inzx = du = —dx

which gives
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(iv) Consider the substitution u = 2z + 1, which produces du = 2dx and
r = “7*1 The lower and upper limits are changed to v = 3 and u = 7,

respectively.
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= 1.7638.

(3) When n = 6, the width of each subinterval is (1—(—1))/6 = % and the endpoints
of the subintervals are
1 1 2
1‘0:—17 x1:_§7 Tro = -3, $3:O, Tya =735, Ts = 3, .1'6:1
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So, by the Simpson Rule
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fl,y) = e 2.
Begin by finding the first partial derivatives. Holding y as a constant, we obtain

fule,y) = L[ T2 ey (2 2o,

) Y )
Holding as a x constant, we obtain
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(2.) ) (~20)(—5) = 5

Then, differentiating f, and f, with respect to z and y to obtain the second
partials as follows.
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(i)
fx(l’,y):2I7
f2(1,0) =2, fo(=1,0) = =2,
f2(V2,0) = 2v2, f(=V2,0) = =2v2,
f2(v/3,0) = 2v/3, Fo(—=V/3,0) = —2/3,
f:c(270>: ) fx(_Qa()): 4,

(iii) Using (i), the height gap is 1 in z-axis, it means the gap is equal. But the
contour map presents more and more tight squeeze in z-axis, 1 > v/2—1 >
V3—v2>2-— \/g, so the surface becomes steeper in the direction of the
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z-axis. Using (ii), the slope is more and more bigger, it means that the
surface becomes steeper in the direction of the z-axis. "

According to the supply and demand principle, when the unit price for p;
is increased, the numbers of units sold for z; is decreased. But, % > 0,
implies that the unit price for p; increases, the numbers of units sold for
x2 also increases. Therefore, they are substitute.
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Then, they are complementary. "



