FINAL FOR CALCULUS

Instructor: Shu-Yen Pan

No credit will be given for an answer without reasoning.

- **1.** [10%]
 - (i) Find the derivative of $f(x) = \frac{\sin x}{x}$.
 - (ii) Evaluate $\int_0^{\pi} (\sin x + \cos x) dx$.
- **2.** [10%] Find the Taylor series of the function $f(x) = e^{1+x}$ at x = 1. And also find the interval of convergence.
- **3.** [10%] Sketch the graph of the function $y = f(x) = \cos^2 x$ on the interval $[0, \pi]$ by obtaining the following information:
 - (i) the intervals where f is increasing and where it is decreasing
 - (ii) the relative extrema of f
 - (iii) the concavity of f
 - (iv) the inflection points of f
- **4.** [10%]
 - (i) The *n*th term of a sequence is given by $a_n = \frac{2n^2+1}{3n^2-1}$. Determine whether the sequence converges or diverges. If the sequence converges, find its limit.
 - (ii) Find the sum of the geometric series $\sum_{n=1}^{\infty} (\frac{1}{\epsilon})^n$ if it converges.
- **5.** [10%] Suppose X is a normal random variable with $\mu = 45$ and $\sigma = 4$. Find the following values by using the table appended in the exam.
 - (i) $P(X \le 50)$
 - (ii) $P(40 \le X \le 50)$
- **6.** [10%] Find the mean, variance and standard deviation of the random variable x associated with the probability density function $f(x) = \frac{4}{x^5}$ over the interval $[1, \infty)$.
- 7. [10%] Find the solution of the initial value problem: $y' = 3x^2e^{-y}$ and y(0) = 1.
- **8.** [10%] Estimate the value $\sqrt[3]{6}$ by using three iterations of the Newton-Raphson method with the initial guess $x_0 = 2$ on the function $f(x) = x^3 6$.
- **9.** [10%]
 - (i) Evaluate $\int_1^4 \ln x \, dx$.
 - (ii) Find $f_x(1, -2)$ for $f(x, y) = \frac{x+y}{x-y}$.
- 10. [10%] Find the maximum and minimum values of the function $f(x,y) = e^{xy}$ subject to the constraint $x^2 + y^2 = 8$.