FINAL EXAM OF ALGEBRA

Date: 2000, June 19, 15:10–17:00

An answer without reasoning will not be accepted.

- **1.** [4%–4%–4%–5%–5%–5%]
 - (i) Give an example of a finite group which is not solvable.
 - (ii) Give an example of a field which is not perfect.
 - (iii) Construct a field of order 9.
 - (iv) Explain why $\mathbf{Z}[x]$ is a UFD but not a PID.
 - (v) Is a regular 102-gon constructible? Why?
 - (vi) Is $\mathbf{Q}(\sqrt{7}, \sqrt{-2})$ a simple extension of \mathbf{Q} ? Why?
- **2.** [12%] Let f(x) be an irreducible polynomial over **Q**. Suppose that the degree of f(X) is n. Let K be the splitting field of f(X) over **Q**. Show that
 - (i) n divides $[K : \mathbf{Q}]$;
 - (ii) $[K : \mathbf{Q}]$ divides n!.
- **3.** [10%] Let K be the splitting field of $x^4 + x^2 6$ over **Q**. Find the Galois group $G(K/\mathbf{Q})$.
- **4.** [10%] Let p be a prime integer. Let F be a finite field of order p^4 and E be a finite field of order p^{24} such that $F \leq E$. Find the Galois group G(E/F).
- **5.** [12%] Let K be the splitting field of the 15-th cyclotomic polynomial $\Phi_{15}(x)$ over \mathbf{Q} . Describe the Galois group $G(K/\mathbf{Q})$ by the fundamental theorem of finitely-generated abelian groups.
- **6.** [10%] Show that **C** is a finite normal extension of **R**. Then find the Galois group $G(\mathbb{C}/\mathbb{R})$.
- 7. [10%] Suppose that E is a finite normal extension of \mathbf{Q} , and $E \leq \mathbf{C}$. Suppose that $E \cap \mathbf{R} \neq E$. Show that the order of the Galois group $G(E/\mathbf{Q})$ is even.
- 8. [12%] Let $f(x) = x^4 + x + 1 \in \mathbf{Z}_2[x]$, and α be a zero of f(x). Show that the minimal polynomial of α^7 over \mathbf{Z}_2 is $x^4 + x^3 + 1$ (i.e., $\operatorname{irr}(\alpha^7, \mathbf{Z}_2) = x^4 + x^3 + 1$).