
 |
|

Ngau Lam (ªL¤û)
 |
 |
Rank | Professor |
|
Tel | +886-6-2757575 Ext. 65140 |
|
Fax | +886-6-2743191 |
|
Office | Math Building 312 |
|
Email | nlam@mail.ncku.edu.tw |
|
Homepage | none |
|
Field | Representation Theory of Infinite Dimensional Lie Algebras and Lie Superalgebras and Their Connections to Quantum Groups and Algebraic Geometry |
|
Education | Ph.D., Brandeis University (1991) M.S., National Central University (1985) B.S. National Cheng Kung University (1983) |
|
Experience | 2004- Professor, National Cheng Kung University 1991-2004 Associate Professor, National Cheng Kung University |
|
Selected Publications |
- Cheng, S.-J. and Lam, N.: Irreducible Characters of General Linear superalgebra and Super Duality, Commun. Math. Phys. 298, 645¡V672 (2010).
- Cheng, S.-J.; Lam, N. and Wang, W.: Super duality and irreducible characters of ortho-symplectic Lie superalgebras, Invent. Math. DOI 10.1007/s00222-010-0277-4.
- Cheng, Shun-Jen; Kwon, Jae-Hoon; Lam, Ngau A BGG-type resolution for tensor modules over general linear superalgebra. Lett. Math. Phys. 84 (2008), no. 1, 75--87.
- Lam, Ngau; Zhang, R. B. Quasi-finite modules for Lie superalgebras of infinite rank. Trans. Amer. Math. Soc. 358 (2006), no. 1, 403--439 (electronic).
- Cheng, Shun-Jen; Lam, Ngau; Zhang, R. B. Character formula for infinite-dimensional unitarizable modules of the general linear superalgebra. J. Algebra 273 (2004), no. 2, 780--805.
- Cheng, Shun-Jen; Lam, Ngau Infinite-dimensional Lie superalgebras and hook Schur functions. Comm. Math. Phys. 238 (2003), no. 1-2, 95--118.
- Lam, Ching Hung; Lam, Ngau; Yamauchi, Hiroshi Extension of unitary Virasoro vertex operator algebra by a simple module. Int. Math. Res. Not. 2003, no. 11, 577--611.
- Lam, Ngau Extensions of modules over supercurrent conformal algebras. Comm. Algebra 29 (2001), no. 7, 3061--3068.
- Cheng, Shun-Jen; Lam, Ngau Finite conformal modules over $N=2,3,4$ superconformal algebras. J. Math. Phys. 42 (2001), no. 2, 906--933.
- Lam, Ngau On the conjecture of the resolution of a finite set of points in projective space. First International Tainan-Moscow Algebra Workshop (Tainan, 1994), 229--235, de Gruyter, Berlin, 1996.
|