成大應用數學研究所博士班修業規定

修業年限
二到七年;直攻博士學位者三到七年。

畢業學分
除博士論文 12 學分外,至少須修滿 24 學分的博士班數學課程;直攻博士學位者則至少須修滿 48 學分。在學期間,每學期皆須選讀 0 學分的專題討論。若課程中有(一)、(二)之分別,須依規定之先後次序修習。

博士班資格考
博士班資格考每年二月及九月各舉行一次。資格考須在第三年結束前完成,且須在入學二年內至少通過一科。考試科目為三科:
基礎科目分析通論、代數通論至少選一科
專業科目機率論、數理統計、泛函分析、代數拓樸、微分方程、數值分析、數學規劃、微分幾何、交換代數 
(資格考考古題可以在這裡找到。)各個科目資格考的參考書籍及範圍如下:
科目參考書籍及範圍
分析通論1. Measure, Intergration, and Functional Analysis (by Ash)
2. Real Analysis (by Royden)
3. Real and Complex Analysis (by Rudin)
Topics:
(i) measure space and measurable functions
(ii) Lebesgue integration (including Riemann-Stieltjes and Lebesgue-Stieltjes integrals)
(iii) differentiation and Radon-Nikodym
(iv) convegence concepts and convergence theorems
(v) L^p spces and basic inequalities such as Minkowski inequality, Hölder inequality, Jensen's inequality etc.
(vi) fundamentals of functional analysis on normed linear space and applications to real analysis
代數通論Algebra (by Hungerford)
機率論1. A Course in Probability Theory (by Kai Lai Chung)
2. Probability Theory (by Yuan Shih Chow and Henry Teicher)
(i) distribution funcation
(ii) classes of sets, measure and probability spaces
(iii) random variable, expectation, independence
(iv) convergence concepts
(v) law of large numbers, random series
(vi) characteristic function
(vii) conditional expectation, conditional independence, introduction to martingales
數理統計1. Theory of Point Estimation (by Lehmenn)
2. Testing Statistical Hupotheses (by Lehmann)
Topics:
(i) group families, exponential families, sufficient statistics, completeness
(ii) UMVU estimators, performance of the estimators, the information inequality
(iii) location-scale families, the principle of equivariance
(iv) Bayes estimation, minimax estimation, minimaxity and admissibility
(v) convergence in probability and in law, large-sample comparisons of estimators, the median as an estimator of location, trimmed mean
(vi) asymptotic efficiency, efficient likelihood estimations
(vii) the Neyman-Pearson fundamental lemmas, distributions with monotones likelihood ratio
(viii) unbiasedness for hypothesis testing, UMP unbiased test
(ix) confidence sets, unbiased confidence sets, Bayes confidence sets
(x) symmetry and invariance, maximal invariants, most powerful invariant test
泛函分析1. Real Analysis (by Rudin)
2. Functional Analysis (by Rudin)
3. Introduction to Functional Analysis (by Taylor and Lay)
4. Functional Analysis (by Yosida)
Topics:
(i) fundamentals of topological linear spaces (including Hahn-Banach theorem, open mapping theorem, closed graph theorem, uniform bounded principle and fixed point theorem etc.)
(ii) Fourier transform and its applications
(iii) basic theory of bounded linear operators
(iv) compact operators and spectral theory (including trace class operator and Hilbert-Schmidt operator on Hilbert spaces)
(v) Spectral mapping theorems
(vi) fundamentals of unbounded operators
代數拓樸Elements of Algebraic Topology (by Munkres)
微分方程Partial Differential Equations (by Fritz John)
數值分析Numerical Analysis (by Burden and Faires) ch.1-ch.9
數學規劃1. Linear Optimization and Extensions Theory and Algorithms (by Fang and Puthenpura)
2. Linear and Nonlinear Programming (by Luenberger)
3. Nonilinear Programming Theory and Algorithms (by Bazaraa)
Topics:
(i) simplex method and interior point methods
(ii) complexity analysis and the ellipoid methods
(iii) convex analysis
(iv) duality and KKT conditions
(v) contraint qualifications and the saddle point theory
(vi) unconstrained and contrained minimizations

指導教授
指導教授以本系專任教師為原則。若指導教授在二人以上(含),在所務會議同意下其中部份可以由外系或外校相關領域之學者擔任。

論文發表
博士候選人在申請學位口試之前,至少應提一篇由教評會核定之 SCI 或國際知名期刊 所接受的論著。

學位口試
博士候選人之學位口試以兩次為限。